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Abstract—Learning abstract state representations and knowl-
edge is crucial for long-horizon robot planning. We present Inter-
PreT, an Large Language Model (LLM)-powered framework for
robots to learn symbolic predicates from language feedback of
human non-experts during embodied interaction. The learned
predicates provide relational abstractions of the environment
state, facilitating the learning of symbolic operators that capture
action preconditions and effects. By compiling the learned predi-
cates and operators into a Planning Domain Definition Language
(PDDL) domain on-the-fly, InterPreT allows effective planning
toward arbitrary in-domain goals using a PDDL planner. In
both simulated and real-world robot manipulation domains, we
demonstrate that InterPreT reliably uncovers the key predicates
and operators governing the environment dynamics. Although
learned from simple training tasks, these predicates and opera-
tors exhibit strong generalization to novel tasks with significantly
higher complexity. In the most challenging generalization setting,
InterPreT attains success rates of 73% in simulation and 40%
in the real world, substantially outperforming baseline methods.

I. INTRODUCTION

Effective long-horizon planning is a long-standing challenge
in robotics [1, 2, 3]. Imagine a household robot that prepares
a meal in your kitchen. It must be capable of generating
faithful multi-step action plans to manipulate novel objects and
achieve diverse task goals. Recently, Large Language Models
(LLMs) have shown the ability to decompose a high-level
task goal into semantically meaningful sub-tasks leveraging
the vast amount of world knowledge they encode [4, 5]. They
exhibit the emergent property of acquiring planning capabili-
ties from a few in-context examples [6, 5]. Researchers have
successfully applied LLM-based planners in real-world robotic
tasks [7, 8, 9, 10], where they can easily incorporate various
forms of feedback and produce plans in novel situations.
Nevertheless, LLM-based planners still struggle to generalize
strongly to long-horizon tasks, and they offer no performance
guarantees [11, 12, 13].

In contrast, classical planners [14, 15] based on sym-
bolic abstractions provide complementary strengths in gen-
erating long-horizon plans with formal guarantees. At the
heart of these planners are predicates, which are binary-
valued functions that map environment states to high-level
symbolic representations, e.g., a function that transforms
the workspace observation into semantic relations such as
on_table(apple). With these symbolic predicates, we
can subsequently model state transitions with symbolic op-
erators [16], describing the preconditions and effects of the
robot’s actions on the symbolic states. The predicates and
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Fig. 1: InterPreT learns predicates as Python functions and
operators in PDDL from human language feedback during
embodied interaction. The learned predicates and operators can be
leveraged by a PDDL planner for planning for unseen tasks involving
more objects and novel goals.

operators together form a PDDL domain [17], enabling a
planning algorithm to generate plans for arbitrary in-domain
tasks [18]. Despite the wide adoptions of planning algorithms
in robotics [19, 20, 21], these methods usually require substan-
tial manual effort and domain expertise to meticulously design
the predicates and operators, hindering their applicability to
real-world problems.

To combine the best of both worlds, there has been a
growing interest in integrating learning methods with planning
algorithms. Notable efforts have been made to learn symbolic
representations from interaction data through unsupervised
learning methods [22, 23, 24, 25, 26]. However, without
explicit guidance, they struggle to uncover predicates that
capture task-relevant semantic relations to facilitate planning.
Meanwhile, cognitive studies [27, 28] have shown that human
infants are remarkably efficient in acquiring new predicate-
like relational concepts, such as spatial relations for stacking
blocks, from the language feedback of caregivers during phys-
ical play. Inspired by these studies, we envision an interactive
learning scheme that will enable a robot to rapidly learn useful
abstractions for planning from online human feedback.

We hypothesize that for robots to achieve human profi-
ciency in learning predicates for planning, they must possess
an ability similar to infants to learn from the rich human
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language feedback in an interactive manner. Recent work has
incorporated human language feedback into learning reward
functions [29] and motion policies [30]. The crux of these
methods is to harness the capabilities of pretrained LLMs [31],
in particular GPT-4 [32], in understanding natural language
input, performing reasoning [33, 34], and generating text-
based responses (computer programs [35], etc.). Following
this line of work, we present InterPreT (Interative Predicate
Learning for Task Planning), the first framework for robots to
learn planning-oriented predicates from interactive language
feedback, as depicted in Fig. 1. InterPreT formalizes predicate
learning as generating Python functions with GPT-4, which are
iteratively refined based on human language feedback. These
predicates (as Python functions) can access raw environment
states with Python perception APIs and freely compose logic
structures and arithmetical computations (e.g., with NumPy) to
form complex semantics. With the learned predicates, we can
easily learn symbolic operators from the robot’s interaction
data using a cluster-and-search algorithm [36]. The learned
predicates and operators are compiled into the PDDL format
on the fly to be used by a planner. LLMs’ capabilities of open-
world text processing and symbolic planners’ performance
guarantees together empower our approach to generalize
strongly to arbitrary tasks in the target domains.

Specifically, we consider language feedback for learning
two types of planning-oriented predicates, i.e., goal predicates
and action precondition predicates [22]. These predicates play
an essential role in indicating task progress and determining
action feasibility, respectively. We design a concise and natural
communication protocol to incorporate this feedback:

‚ Feedback for learning goal predicates: At the beginning
of each task, the human user specifies the goal, e.g.,
“put plate on table mat”. Then, it signals when the
robot achieves the goal and it explains any unsatisfied
conditions if the robot mistakenly declares success.

‚ Feedback for learning precondition predicates: The
human user verifies the feasibility of the action the robot
proposes to execute next. They explain any violated
preconditions if the action is infeasible, e.g., “you can’t
pick up the plate because it is too large for the gripper to
grasp”, or otherwise confirm that the action is feasible,
e.g., “you can go ahead and pick up red block”.

This protocol allows InterPreT to verify and refine the learned
predicates from time to time, enabling predicate learning with
closed-loop feedback.

In the experiments, we evaluate InterPreT’s effectiveness
in a suite of simulated and real-world robot manipulation
domains. These domains are designed such that their dynamics
can be modeled using specific predicates and operators, which
the robot must uncover. We first have InterPreT learn predi-
cates and operators by having the robot interact with a series
of simple training tasks while receiving natural language feed-
back from human users. We then test the learned predicates
and operators on harder tasks involving more objects and novel
goals. We show with qualitative and quantitative results that:

(i) InterPreT learns valid predicates and operators that capture
essential regularities governing each domain. (ii) The learned
predicates and operators allow the robot to solve challenging
unseen tasks requiring combinatorial generalization, with a
73% success rate in simulation, outperforming all baselines
by a large margin. (iii) InterPreT can effectively handle real-
world uncertainty and complexities, operating with consider-
able performance in real-world robot manipulation tasks.

II. RELATED WORK

A. Learning Symbolic Representations for Planning

Learning symbolic abstractions of complex domains for
effective planning is a long-standing pursuit in the planning
community [37, 38, 39, 22, 26, 25, 3, 40]. Previous methods
have focused on discovering propositional [22] or predicate
state symbols [23] from embodied experience. These symbols
are usually acquired by composing predefined features [37,
24, 41, 25], or learning statistical [38] or neural network [26]
models with clustering [39, 22, 23] or representation learn-
ing techniques [42, 43, 26]. Such learning often relies on
unsupervised objectives like minimizing state reconstruction
error [42, 43, 26], prediction error [38, 42, 26], bisimulation
distance [41] or planning time [25]. However, these approaches
struggle to capture high-level semantic relations [43, 26] and
often require manual feature engineering [24, 41, 25].

Supervised learning has also been explored to ground
semantic predicates to continuous observations, e.g., images
or continuous states [44, 45]. While large-scale annotated
datasets [46] are available to learn general-purpose predicate
grounding models, fine-tuning with task-specific data is still
needed for learned predicates to serve reasoning and planning
in specific domains [47, 48, 49]. To reduce annotation needs,
prior works have employed active learning [50, 51] or novel
labeling techniques [52, 53], but a minimum of 500-1000
labels [50, 51] are still required per predicate.

Our work builds on this line of research in learning sym-
bolic abstractions from interaction data and weak supervision.
We mitigate limitations of unsupervised methods by learning
predicates from natural language feedback. Meanwhile, we are
able to learn semantic predicates as Python functions from a
few data samples, leveraging the code generation capability
and world knowledge of GPT-4.

B. Large Language Models-enabled Planning and Learning

Large Language Models [31] have shown remarkable abil-
ities in encoding vast semantic knowledge and demonstrate
emergent capabilities in learning, reasoning, and planning with
few-shot or even zero-shot prompting [54, 33, 5]. Pretrained
LLMs have been applied as planners in text-based environ-
ments with natural language instructions and feedback [34, 5,
4, 55, 56]. For grounded planning in realistic robotic domains,
a common approach is to utilize out-of-the-box perception
models to convert raw observations into textual descriptions
for LLMs to consume [57, 58, 8, 59, 60, 61], or provide
perception and action APIs for LLMs to generate executable
programs [10, 9]. However, these perception models struggle



to capture complex task-relevant information like semantic ob-
ject relations without task-specific tuning [47, 49]. Leveraging
GPT-4’s power, our work effectively acquires meaningful task-
relevant predicates to facilitate grounded planning.

Pretrained LLMs are also leveraged to enhance robot agent
intelligence by generating formatted outputs (e.g., code, formal
language) and refining them based on language feedback
via iterative prompting. They have been used as interfaces
between natural language and robotics modalities like formal
planning languages [62, 11] (e.g., PDDL [17]), reward func-
tions [29, 63] and trajectories [30]. Specifically, Voyager [64]
uses GPT-4 to construct an automatic curriculum and a skill
library to build lifelong learning agents, while Eureka [29]
and OLAF [30] leverage GPT-4 for learning from language
feedback effectively by prompting. Inspired by these works,
we learn predicates from language feedback by generating and
iteratively refining Python functions with GPT-4.

III. PRELIMINARIES AND PROBLEM SETUP

We consider robot task planning in a continuous state
space O with language goal specifications G. Without losing
generality, we assume the states are factorized with respect to
a set of objects E, where such information can be obtained
using mainstream perception models like object detectors. The
robot is equipped with a library of primitive actions A, where
each a P A is parameterized by object variables and can be
grounded to certain objects to produce an executable action a,
e.g., Pick(cup). Then, a task planning problem is to find a
sequence of actions a1:T to reach a final state og that satisfies
a language goal g P G from an initial state o0 P O.

Following the classical planning formulation [15, 16], we
aim to learn predicates Ψ to abstract the state space O into
a symbolic one S for effective and generalizable planning.
A predicate ψ :“ă dψ, fψ ąP Ψ defines a function fψ that
captures a symbolic relation among a list of object variables,
with its semantic meaning described as dψ . The function fψ :
O ˆ Ek Ñ t0, 1u takes a continuous state o P O and a list
of k objects pe1, e2, ..., ekq P Ek and outputs a binary value
indicating whether the relation holds or not. For example, a
predicate on(a,b) can be applied to check whether cup is
physically on plate, producing a positive literal on(cup,
plate) or a negative literal ␣on(cup, plate). Then the
symbolic state s of a continuous state o can be obtained by
collecting all positive literals at state o given predicate set Ψ
and object set E, denoted s “ Parsepo; Ψ, Eq.

With the object-factorized symbolic state space S, we model
the preconditions and effects of primitive actions with sym-
bolic operators Ω. Each symbolic operator ω P Ω correspond-
ing to a primitive action a is characterized by a precondition
set CON (literals must hold before executing a), and adding
and deleting effect set EFF` and EFF´ (literals added and
removed from symbolic state s after executing a). These
symbolic operators are lifted by design, enabling the evaluation
of preconditions and effects for any executable version a
obtained by applying the primitive action a to any objects.
With the learned predicates Ψ, we further learn the symbolic

operators Ω of all primitive actions A to achieve generalizable
task planning. The learned predicates and operators can be
compiled into a PDDL domain. By converting a language goal
g P G into a symbolic goal sg [11, 62], such a PDDL domain
can enable effective planning using an off-the-shelf classical
planner [18].

IV. METHOD

In this section, we present the InterPreT framework that
learns predicates and operators from language feedback for
planning. The overall architecture is depicted in Fig. 2. There
are five essential modules that operate together to empower
InterPreT: (i) Reasoner, which analyzes language feedback to
identify new predicates and extract task-relevant information
(e.g., predicate labels, action preconditions), (ii) Coder, which
generates Python functions to ground the new predicates, (iii)
Corrector, which iteratively refines existing predicate func-
tions to align their predictions to the extracted predicate labels,
(iv) Operator Learner, which learns operators from interaction
data based on the learned predicates, and (v) Goal Translator,
which translates language goal specifications into symbolic
goals to enable planning. Below, we elaborate on the core
GPT-4-powered modules-Reasoner, Coder and Corrector-that
enable predicate learning, and briefly introduce the rest, which
are mainly adapted from existing works.

Given language feedback lt at time step t, our objective is to
learn new predicates and refine existing predicates Ψt´1, pro-
ducing an updated set of predicates Ψt. For simplicity of nota-
tion, we denote the textual descriptions of predicates as tdψu
and the corresponding predicate functions as tfψu for any
predicate set Ψ. We decompose the predicate learning process
at time step t into three sequential sub-steps (see Fig. 2(a)): (i)
Reasoner identifies new predicates with descriptions tdψnew

u

and extracts current state literals that provide predicate labels
tyu, (ii) Coder generates new predicate functions tfψnewu,
and (iii) Corrector refines existing predicate functions to fix
execution errors and match their predictions to tyu. Formally,
we summarize this process in Eq. (1):

Reasoner : tdψnew
u, tyu “ fReasonplt, tdψt´1

uq,

tdψt
u “ tdψnew

u Y tdψt´1
u

Coder : tfψnew
u “ fCodeptdψnew

u,Ψt´1q,

tfψ̂t
u “ tfψnew

u Y tfψt´1
u,

Corrector : tfψt
u “ fCorrectpot, tyu, tfψ̂t

uq,

Ψt “ tă dψt
, fψt

ąu,

(1)

where fReason, fCode, fCorrect are parameterized by GPT-4
with varying prompt templates, and the initial predicate set is
empty, i.e., Ψ0 “ H. Note that we omit some of the output
terms irrelevant to predicate learning for clarity. We detail the
modules below and provide the complete prompt templates in
the supplementary material.

A. Reasoner

The Reasoner module is designed to identify essential
predicates and extract task-relevant information from goal-
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Fig. 2: The system architecture of InterPreT. (a) We design three GPT-4-enabled modules that operate sequentially to identify planning-
oriented predicates and generate the predicate functions based on language feedback. (b) An example predicate function learned. (c) With the
learned predicates, we learn PDDL operators with a cluster-then-search algorithm. (d) The learned predicates and operators enable effective
task planning, after we translate language goals into symbolic goals with GPT-4.

related or precondition-related language feedback; see the top
left corner of Fig. 2(a) for examples of these feedback types.
We tailor Reasoner to each language feedback type using
different prompt templates, as detailed below. We highlight
the language feedback in blue, and the GPT-4 output in
orange. We employ Chain-of-Thought (CoT) prompting [65]
for Reasoner to provide the complete reasoning trace and in-
context learning [33] to enable Reasoner to learn from a single
example. These techniques are applied to all LLM promptings
to facilitate robust response generation.

1) Goal-related feedback:

‚ (Specify task goal) Given a natural language goal spec-
ification, Reasoner identifies new goal predicates and
converts the language goal into symbolic form using
existing and new predicates:

Context: ...{example} {objects} {existing predicates}...
Goal: Stack red block on coaster.
Reasoning: The goal can be captured by a symbolic literal
obj on obj(red block, coaster). As predicate obj on obj(a, b)
is unknown, we need to learn it.
Predicates to learn: {“obj on obj(a, b)”: “check whether ob-
ject a is on object b”}
Symbolic goal: {“obj on obj(red block, coaster)”: true}

The identified predicates to learn tdnewu are to be sup-
plied to Coder for predicate function generation, and the
converted symbolic goal sg is recorded for robot planning
and exploration.

‚ (Explain unsatisfied goal) Given explanations for unsat-
isfied goal literals, Reasoner extracts the current symbolic
literals from the language feedback, which provide pred-
icate labels tyu. These predicate labels are crucial for
Corrector to correct the generated goal predicates.

Context: ...{example} {objects} {existing predicates}...
Human explanation: You haven’t reached the goal because
red block is not on coaster.
Current symbolic state: {“obj on obj(red block, coaster)”:
false}

‚ (Signal goal achieved) When receiving goal-achieved
signals, we simply use the extracted symbolic goal as
the current literals, which provide positive labels tyu to
supervise goal predicates.

2) Precondition-related feedback:

‚ (Explain infeasible action) Given an explanation of an
infeasible action, Reasoner identifies new precondition
predicates to learn tdnewu, reasons about the current
symbolic state tyu, and summarizes the reflected action



preconditions CONnew, as shown in the example below.
The summarized action preconditions only take argu-
ments that exist in those of the action, e.g., for action
pick_up(a), we only summarize the preconditions
that take no argument or object a as an argument. We
aggregate CONnew into the precondition set CONa of
the corresponding action a, which is maintained for op-
erator learning (described in Section IV-D). Additionally,
tdnewu is fed into Coder to generate precondition predi-
cate functions, and the predicate labels tyu are provided
to Corrector for correction.
Context: ...{example} {objects} {existing predicates}...
Infeasible action: pick up(coaster)
Human explanation: You can’t pick up coaster it is too large
to be grasped.
Reasoning: ... The precondition of pick up(coaster) is that
it is small enough to be grasped by the gripper... We learn
predicate obj graspable(a) to check whether object a can be
grasped by the gripper...
Predicates to learn: {“obj graspable(a)”: “check whether
object a is small enough to be grasped by the gripper...”}
New action preconditions: {“action”: ”pick up(a)”, “new
preconditions”: {“obj graspable(a)”: true}}
Current symbolic state: {“obj graspable(coaster)”: false}

‚ (Signal feasible action) When an action is signaled as
feasible, we confirm that all preconditions in CONa are
satisfied. The labels y for these precondition predicates
are obtained and provided to Corrector to correct precon-
dition predicate functions.

B. Coder

Once Reasoner identifies a set of new predicates with
text descriptions tdnewu, the next step is to construct the
corresponding predicate functions tfnewu to truly learn them.
Inspired by recent successes in using pretrained LLMs to gen-
erate computer programs for robotic tasks [10, 9, 64, 29], we
design Coder to generate these predicate functions as Python
code based solely on tdnewu, leveraging the power of GPT-
4. We assume the availability of a library of perception API
functions that provide access to continuous states, such as the
bounding boxes and categories of detected objects. The pred-
icate functions can then be constructed by composing these
API functions with classical logic structures and arithmetical
computations (e.g., using NumPy), exploiting the flexibility
of Python programming. Representing predicates as Python
functions offers several advantages: (i) They are semantically
rich and interpretable compared to neural networks [26, 42],
and have better representation power and more versatile syntax
than logical programs [25, 41]. (ii) They enable one-shot
generation purely from the text description without labeled
data, leveraging the extensive commonsense priors in GPT-4.

To facilitate the construction of predicate functions, we
provide Coder with the following primitives: (i) perception
API functions for accessing environment states, (ii) the NumPy
library for arithmetic computations, and (iii) if-else and loop

statements for controlling the logic structure. We also al-
low Coder to create additional utility functions that can be
reused to define different predicate functions. This divide-
and-conquer strategy helps mitigate the complexity of building
predicate functions from scratch. In practice, we prompt GPT-
4 with a code snippet demonstrating the usage of primitives
by a few examples of utility functions and one example
predicate function. Detailed comments are included in these
examples to enable CoT prompting. Due to space limitations,
we show a partial prompt with an example utility func-
tion get_object_x_range below, and an example predicate
function in Fig. 2(b). The complete prompt for Coder can be
found in the supplementary material.

import numpy as np
from perception_api import get_object_center_3d,
get_object_size_3d...

# <utility>
def get_object_x_range(a) -> np.ndarray:

"""
Get the range of object a along x axis
:param a: string, name of detected object
"""
center = get_object_center_3d(a)
extent = get_object_size_3d(a)
return np.array([center[0] - extent[0] / 2,
center[0] + extent[0] / 2])

# <end-of-utility>

......

C. Corrector

The predicate functions generated by Coder are pruned
to two types of errors: (i) execution errors due to invalid
operations or syntax errors in the function, and (ii) alignment
errors that arise when GPT-4’s understanding of predicates
misaligns with that of the human user. Inspired by [64, 29],
we introduce Corrector, which adopts an iterative prompting
mechanism to correct the functions and rectify these errors.

When an execution error occurs while calling a predicate
function, Corrector takes the execution trace from the code
interpreter and the erroneous code as input. It then performs
zero-shot reasoning on the error and generates the corrected
code as output. This process is repeated until the error is
resolved or the maximum number of iterations is reached. Sim-
ilarly, to address alignment errors, Corrector is provided with
the predicate labels tyu and the current predicate functions. It
then iteratively refines the functions to align their outputs with
the given labels. An example prompt illustrating this process
is shown below:
Context: ...{instructions} <code> {observation}...
Alignment error: obj on obj(red block, blue block) should be
true, but your prediction is false.
Reasoning: This is because we assume object a should be within
object b along the x-axis when we define the predicate function
obj on obj(a, b), which is wrong; in fact, the relation is established
when object a is overlapped with b, so we need to correct the
function accordingly.
Corrected code: <corrected_code>



D. Other Components

Given the learned predicates, we implement a variant of
the cluster-then-search algorithm [36] to learn operators. This
algorithm effectively learns symbolic operators that best cap-
ture the action effects and preserve a minimal set of necessary
preconditions from a small number of successful and failed
interactions. We also incorporate the action preconditions
summarized by Reasoner into the learned operators. To ensure
learning from language feedback with no delays, we run the
operator learning algorithm at each interaction step, maintain-
ing an operator set compatible with the up-to-date predicates
and interaction experience. The implementation details are
included in the supplementary material.

During the training phase, InterPreT learns predicates and
operators as the robot interacts with the environment to
perform a series of training tasks (detailed in Section V-A3).
We employ a strategy where the robot plans with a classical
planner [18] based on the learned predicates and operators
50% of the time, and randomly takes a symbolically feasible
action according to the recorded action preconditions other-
wise. Empirically, this approach enables a balance between
exploration and exploitation.

At test time, we introduce an LLM-based goal translator to
convert language goals into symbolic form, following previous
works [62, 11]. We refer the reader to the original papers for
a detailed explanation of how the method works. In practice,
we find that the GPT-4-based goal translator performs robustly
when provided with a few examples.

V. EXPERIMENTS

We conduct experiments to answer the following questions:
(i) Can InterPreT learn meaningful task-relevant predicates
and operators from language feedback? (ii) How well do the
learned predicates and operators (i.e., PDDL domains) gener-
alize to tasks that involve more objects and novel goals? (iii)
Can InterPreT handle perception and execution uncertainties
in the real world?

A. Experimental Setup

We quantitatively and qualitatively evaluate InterPreT on
a suite of robot manipulation domains in a simulated 2D
kitchen environment [66] and a real-world environment. The
domain design, baseline methods, and evaluation protocol are
described below.

1) Domain design: We design three simulated domains
based on the Kitchen2D environment [66] and two real-world
domains that represent the counterpart of the simulation. Each
domain is associated with a set of simple and complex tasks,
and designed with a ground-truth PDDL domain file specifying
the essential symbolic constraints and regularities. The five
domains are each demonstrated with an example simple task in
Fig. 3(a). We briefly introduce the domains below and include
further details in the supplementary material.

‚ StoreObjects (Sim and Real): This domain involves
storing objects on a large receptacle by picking, placing,

and stacking actions. It features predicates and corre-
sponding constraints similar to those in the BlockWorld
domain [67], such as on(a,b), and on_table(a).

‚ SetTable (Sim and Real): This domain involves rear-
ranging objects to set up a breakfast table. Compared
to StoreObjects, it additionally introduces a push ac-
tion to move large objects (e.g., plates) that cannot
be grasped. It features precondition predicates such as
is_graspable(a) and is_flat(a).

‚ CookMeal (Sim only): This domain involves putting
ingredients into a pot and filling the pot/cups with wa-
ter. It requires understanding the task semantics of ac-
tions, featuring predicates such as is_container(a),
in(a,b) and has_water(a). It also imposes con-
straints such as the only way to fill a large container
(e.g., a pot) with water is by using a cup.

2) Baselines: As there are no prior methods that learn
predicates from human language feedback for planning, we
compare InterPreT with state-of-the-art LLM-based planners.
(i) Inner Monologue (IM)[8] generates action plans based
on textualized environment states using an LLM. (ii) Code-
as-Policies (CaP)[10] employs an LLM to generate policy
code that invokes perception and action APIs. We also imple-
ment variants of IM that incorporate predicates and operators
learned with InterPreT. For a fair comparison, all baselines
access the environment state through perception APIs and
learn from in-context examples.

‚ IM + Object [8]: A naive IM variant that utilizes the tex-
tualized output of perception APIs, e.g., detected objects
with positions and categories, as the environment state.

‚ IM + Object + Scene [8]: An IM variant that uses envi-
ronment states augmented by scene descriptions, obtained
using predicates learned by InterPreT.

‚ IM + Object + Scene + Precond [8]: An IM variant that
leverages the operators learned with InterPreT to check
the precondition of actions proposed by IM. Infeasible
actions are prompted back to the LLM for replanning.

‚ CaP [10]: A strong CaP baseline that performs precondi-
tion checks using “assertion” or if-else statements (akin
to ProgPrompt[9]) and hierarchically composes policies
for long-horizon planning. We have it generate predicate
functions for precondition checks.

3) Evaluation protocol: We adopt a train-then-test evalua-
tion workflow for all domains. For each domain, the robot first
learns from a series of 10 simple training tasks accompanied
by language feedback. For testing, we design four sets of
tasks (10 tasks per set) that pose different levels of challenge
to the generalizability of the methods. We present example
tasks in different test sets of the real-world SetTable domain
in Fig. 3(b).

‚ Canonical: Simple tasks with objects and goals seen
in training but with different initial configurations.

‚ More objects: Simple tasks with seen goals but in-
volve additional unseen objects.

‚ Novel goals: Complex tasks with seen objects but
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Fig. 3: Simulated and real-world domains used in the experiments. We show example training tasks of all five domains in (a) and
demonstrate the design of the 4 test sets in the real-world SetTable domain in (b). In More objects and Combined, an unseen object
“spoon” introduces additional generalization challenges.

novel goals that compose goals seen in training tasks.
‚ Combined: Complex tasks with unseen objects and

goals, combining the last two setups.
We evaluate the performance of all methods using the success
rate on the 10 tasks of each test set. In simulation, we conduct
systematic evaluations by running the whole training-testing
pipeline 3 times with varied seeds. We directly terminate the
episode upon action failure for all methods.

Domain Goal Predicates Precondition Predicates

StoreObjects obj_on_obj(a, b),
obj_on_table(a)

obj_graspable(a),
obj_clear(a),

gripper_empty()

SetTable obj_on_obj(a, b),
obj_on_table(a)

obj_graspable(a),
obj_clear(a),

gripper_empty(),
obj_is_plate(a),

obj_thin_enough(a)

CookMeal
obj_inside_obj(a, b),

obj_on_table(a),
obj_filled_with_water(a)

obj_graspable(a),
obj_clear(a),

gripper_empty(),
obj_is_plate(a),

obj_thin_enough(a),
obj_large_enough(a),

obj_is_food(a),
obj_is_container(a)

TABLE I: Learned goal and precondition predicates in simulated
domains. We report the union of the three runs. While we learn both
the positive predicate and its negated counterpart, we only show the
positive ones here for clarity. We adjust some of the predicate names
to unify them across domains and runs for better readability.

B. Experimental results

1) Qualitative analysis: We answer Question (i) by qual-
itatively analyzing the predicates and operators learned by
InterPreT in the simulated domains. The full details of the
learned predicate functions and operators are included in the
supplementary material. Table I shows InterPreT can effec-
tively learn language-grounded and semantically meaningful
goal and precondition predicates in all three domains. We

obj_in_gripper

obj_on_obj

obj_graspable

obj_clear

pick_from_table

pick_from_obj

place_on_table

obj_on_table

gripper_empty

place_first_on_second

����������������������������
� �����������
������	�
�������

Fig. 4: Visualization of one training run in simulated StoreObjects
domain. The total number of learned predicates increases by 2 for
each labeled predicate as we also learn its negation. We provide the
predicate function of obj_in_gripper as an in-context example,
known at Step 0. We empirically label the learned operators with
semantic names based on their interpreted meanings.

report the union of learned predicates over three runs; we
observe that the learned predicates are generally consistent
across the runs. Specifically, InterPreT successfully learns goal
predicates that acquire the desired task outcomes, such as
“fruit can on shelf” and “plate on table” in StoreObjects and
SetTable domains and “sausage in pot” and “cup is filled”
in CookMeal domain. The learned precondition predicates
acutely capture the essential task constraints, such as “fruit
can can only be picked up when there is nothing on its
top”, and “water can only be poured into a container”. These
well-learned predicates necessarily build the foundations for
learning good operators.

We conduct a case study on one training run in the Store-
Objects domain. Fig. 4 visualizes the process of learning
new predicates and operators (represented as red and blue
lines, respectively) while provided with intermittent language



Domain Test Set IM + Object [8] IM + Object IM + Object CaP [10] InterPreT (Ours)
+ Scene [8] + Scene + Precond [8]

StoreObjects Canonical 0.60 ˘ 0.00 0.90 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.93 ˘ 0.12
More objects 0.30 ˘ 0.00 0.83 ˘ 0.06 1.00 ˘̆̆ 0.00 0.83 ˘ 0.15 0.90 ˘ 0.17
Novel goals 0.00 ˘ 0.00 0.87 ˘ 0.15 0.97 ˘ 0.06 0.53 ˘ 0.21 1.00 ˘̆̆ 0.00
Combined 0.00 ˘ 0.00 0.77 ˘ 0.06 0.87 ˘ 0.15 0.03 ˘ 0.06 1.00 ˘̆̆ 0.00

SetTable Canonical 0.80 ˘ 0.10 0.80 ˘ 0.10 1.00 ˘̆̆ 0.00 0.87 ˘ 0.06 1.00 ˘̆̆ 0.00
More objects 0.73 ˘ 0.06 0.83 ˘ 0.12 1.00 ˘̆̆ 0.00 0.73 ˘ 0.15 1.00 ˘̆̆ 0.00
Novel goals 0.00 ˘ 0.00 0.10 ˘ 0.10 0.53 ˘ 0.33 0.77 ˘̆̆ 0.25 0.53 ˘ 0.41
Combined 0.00 ˘ 0.00 0.03 ˘ 0.05 0.20 ˘ 0.16 0.33 ˘ 0.15 0.37 ˘̆̆ 0.45

CookMeal Canonical 0.90 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.97 ˘ 0.06 0.97 ˘ 0.06
More objects 1.00 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.93 ˘ 0.06 1.00 ˘̆̆ 0.00
Novel goals 0.97 ˘ 0.06 0.93 ˘ 0.06 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
Combined 0.00 ˘ 0.00 0.23 ˘ 0.15 0.97 ˘̆̆ 0.06 0.77 ˘ 0.12 0.83 ˘ 0.12

Average success rate over Combined 0.00 0.34 0.68 0.38 0.73

TABLE II: Systematic evaluations of the methods on all test sets in simulated domains. We highlight our method in deep gray and
baselines that benefit from our learned predicates and/or operators in light grey. InterPreT achieves a 73% success rate in the most challenging
Combined test set, outperforming all baselines by a large margin.

feedback (indicated by light green bars). Note that feedback
less important for predicate learning, i.e., signaling task suc-
cess or feasible action, are omitted in the figure for clarity.
We observe that InterPreT is able to explore effectively and
acquire all predicates in 20 steps of interaction. Based on the
predicates learned, InterPreT sequentially learns four operators
that exhibit clear semantic meaning. Notably, it recovers two
operators pick_from_table and place_on_table for
the same primitive action place_up that is executed in
different contexts. As the robot blindly explores the domain
with inadequate knowledge and continuously proposes infea-
sible actions, dense language feedback is provided to explain
precondition violations in Steps 8-20. Once InterPreT captures
all action preconditions, the robot can freely navigate the
environment without human intervention. Fig. 4 shows that all
predicates and operators are properly initialized at Step 20 and
are further corrected and refined in subsequent interactions.

2) Evaluating planning and generalization: We systemati-
cally evaluate the planning performance of all methods on the
four test sets for each simulated domain. Table II presents the
full results, demonstrating the strong generalizability of Inter-
PreT when planning with a classical planner [18]. Note that
several baselines utilize predicates and operators learned with
InterPreT; their results are shown in light gray, while Inter-
PreT’s results are in dark gray. InterPreT achieves success rates
over 90% on most test sets. On the challenging Combined
test set, which requires strong compositional generalizabil-
ity, it attains an average success rate of 73%, substantially
outperforming IM variants (IM + Object, IM + Object + Scene,
and IM + Object + Scene + Precond) by 73%, 39%, and 5%,
respectively, and the CaP baseline by 35%.

We find the predicates and operators learned with InterPreT
enable significantly improved generalization in planning, by
providing meaningful relational abstractions and explicit tran-
sition modeling. The naive IM variant (IM + Object) struggles
to generalize with only textualized state descriptions, solv-

ing 0% of Combined tasks. However, augmenting states
with predicates learned by InterPreT (IM + Object + Scene)
boosts the success rate on Combined tasks from 0% to
34%. Further ensuring action validity using learned operators
(IM + Object + Scene + Precond) rivals InterPreT at 68% aver-
age success. This hybrid approach benefits from combining
world knowledge in the LLM with validity guarantees from
operators. However, we observe that it sometimes fails to
reach the goal within the maximum number of steps due to
frequent replanning. In contrast, InterPreT perform explicit
PDDL planning with learned predicates and operators, and
thus can generate optimal long-sequence plans with guarantee.

We demonstrate the importance of learning from language
feedback by comparing InterPreT with CaP, a baseline that
generates predicate functions for precondition checks and
composes policies for long-horizon planning, but without
leveraging language feedback. Although CaP can generate
policy code with correct logic based on in-context examples, it
occasionally fails to generate accurate predicate functions due
to the lack of language supervision. This limitation becomes
evident in CaP’s poor performance on Combined tasks in
the StoreObjects and SetTable domains, which require precise
predicate understanding for successful long-horizon planning.
The superior performance of InterPreT in these challenging
scenarios highlights the significant benefits of incorporating
natural language supervision compared to CaP.

Furthermore, we explore the transferability of learned pred-
icates to facilitate learning and planning in new domains.
We investigate the unsatisfactory performance of InterPreT in
the SetTable domain, and find that simultaneously learning
predicates related to pick-and-place and push actions poses
a significant challenge. To address this issue, we bootstrap
the learning process with predicates acquired from simpler
domains. Table III demonstrates that initializing InterPreT
with predicates learned in the StoreObjects domain leads to
near-perfect learning in the SetTable domain, achieving 100%



From scratch Bootstrapped

Canonical 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
More objects 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
Novel goals 0.53 ˘ 0.41 1.00 ˘̆̆ 0.00
Combined 0.37 ˘ 0.45 1.00 ˘̆̆ 0.00

TABLE III: Bootstrapping predicate learning from previously
learned predicates in similar domains. Reusing predicates learned
in StoreObjects leads to near-perfect predicate learning in SetTable.
The transfer of predicates is natural as all predicate functions utilize
the same Perception API functions.
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Fig. 5: Real-robot evaluations in real-world StoreObjects and
SetTable domains. We train InterPreT once on 10 tasks and test
on 5 tasks per test set. Note that the predicate learning in SetTable
is bootstrapped from predicates learned in StoreObjects.

success across all test sets. This finding highlights the potential
for reusing previously learned predicates to enhance learning
efficiency and planning performance in complex domains.

3) Real-robot results: We evaluate InterPreT in the real-
world StoreObjects and SetTable domains, compared to the
vanilla IM + Object baseline [8]. We train InterPreT on 10
training tasks while a human user provides language feedback
with a keyboard. We then test all methods on 5 test tasks
per test set, with the success rates shown in Fig. 5. In the
SetTable domain, we directly bootstrap the learning with pred-
icates learned from StoreObjects, as the simulated results have
already demonstrated the difficulty of learning from scratch in
SetTable. The results indicate that InterPreT can effectively
capture symbolic constraints and regularities in real-world
settings where perception and execution uncertainties present.
In contrast, the baseline struggles to generalize to novel task
goals, highlighting the importance of the learned predicates
and operators. We observe a severe performance drop for
InterPreT in the StoreObjects domain under the Combined
and Novel goals settings. We find that this is attributed
to the increased occurrence of primitive action execution
failures as the task horizon extends. Despite this, InterPreT still
outperforms the baseline by a significant margin, achieving
success rates of 60% and 20% in the Novel goals and
Combined settings, respectively.

C. Additional Analysis and Discussions

1) Runtime Analysis: To gain insights into the compu-
tational efficiency of InterPreT, we measure its runtime in
the simulated domains and provide a breakdown by stage in

Stage Run time / Iteration

Median Min Max

Training Learn predicates 2.94 s 1.05 s 23.32 s
Learn operators 32 ms 1 ms 97 ms

Testing Translate goal 1.60 s 0.91 s 5.53 s
Plan with PDDL 99 ms 75 ms 130 ms

TABLE IV: Run time breakdown of InterPreT at different
training and testing stages. We show the median, minimum, and
maximum values as the statistics are not normally distributed.

Domain #LLM Calls #Transitions #Feedback

StoreObjects 22{31{23 54{75{90 17{26{18
SetTable 38{38{62 41{39{67 31{30{55
CookMeal 32{29{46 62{34{48 23{22{38

TABLE V: Number of LLM calls (#LLM Calls), successful state
transitions collected (#Transitions), and language feedback provided
(#Feedback) across the three runs in each domain.

Table IV. Due to the variability in runtime across different
iterations, we report the median, minimum, and maximum
values for a comprehensive overview. The results reveal that
the GPT-4-powered predicate learning and goal translation
stages constitute the primary computational bottleneck. This
is expected as calling the GPT-4 API involves a relatively
long waiting time, which is also significantly influenced by
the quality of the Internet connection. However, we anticipate
that response time will cease to be a limiting factor for LLMs
in the near future, given the rapid advancements in the field.

We also present other relevant statistics in Table V, in-
cluding the number of LLM calls, successful state transitions
collected, and the amount of human feedback provided across
three training runs for each domain. While these values exhibit
considerable variation due to the inherent randomness in ex-
ploration and LLM outputs, InterPreT demonstrates the ability
to recover a PDDL domain from a relatively small number
of language feedback and interaction data. This highlights
the sample efficiency of our approach, which is crucial for
practical applications where extensive human feedback and
interaction may be costly or time-consuming to obtain.

2) Robustness to varied language feedback: Natural lan-
guage feedback from non-expert human users can be varied,
with the same predicate being referred to in different ways. We
evaluate the robustness of InterPreT to such varied feedback
in the simulated StoreObjects domain by synthesizing diverse
feedback templates. Using ChatGPT [68], we generate 3
alternatives for each possible feedback, which are randomly
sampled during each training step. We conduct three training
runs with this varied feedback and perform both qualitative
and quantitative evaluations.

Table VI presents the predicates learned across the three
runs, demonstrating that InterPreT robustly captures the essen-
tial goal and precondition predicates. As the goal specifications
are generally consistent, InterPreT learns goal predicates with
the same names in all runs. Despite the varied explanations of



Run1 Run2 Run3

Goal Predicates obj_on_obj(a, b),
obj_on_table(a)

obj_on_obj(a, b),
obj_on_table(a)

obj_on_obj(a, b),
obj_on_table(a)

Precondition Predicates
obj_small_enough(a),

obj_clear(a),
gripper_empty()

obj_size_ok_for_gripper(a),
no_obj_on_top(a),

hand_empty()

obj_small_enough_for_gripper(a),
obj_free_of_objects(a),

gripper_empty()

TABLE VI: Learned predicates across three training runs with varied language feedback for the simulated StoreObjects domain.

Run1 Run2 Run3

Canonical 1.00 1.00 1.00
More objects 1.00 1.00 1.00
Novel goals 1.00 1.00 1.00
Combined 1.00 1.00 1.00

TABLE VII: Evaluating InterPreT trained with varied language
feedback for the simulated StoreObjects domain. We report the
results of all three training runs.

precondition violations, InterPreT learns precondition predi-
cates with different names but consistent semantics. Table VII
shows that the predicates and operators learned from the
varied feedback yield robust planning in all test sets. These
results demonstrate InterPreT’s robustness to diverse language
feedback, highlighting its ability to capture the underlying
semantics despite variations in the feedback provided.

VI. CONCLUSIONS AND LIMITATIONS

We present InterPreT, an interactive framework that enables
robots to learn symbolic predicates and operators from lan-
guage feedback during embodied interaction. InterPreT learns
predicates as Python functions leveraging the capabilities of
LLMs like GPT-4. It allows iterative correction of these
learned predicate functions based on human feedback to
capture the core knowledge for planning. The predicates and
operators learned by InterPreT can be compiled on the fly
as a PDDL domain, which enables effective task planning
with a formal guarantee with a PDDL planner. Our results
demonstrate that InterPreT can effectively acquire meaningful
planning-oriented predicates, which allows learning operators
to generalize to novel test tasks. In simulated domains, it
achieves a 73% success rate on the most challenging test set
that requires generalizability to more objects and novel task
goals. We also show InterPreT can be applied in real-robot
tasks. These findings validate our hypothesis that human-like
planning proficiency requires interactive learning from rich
language input, akin to infant development.

While showing promise, InterPreT has several limitations
that we would like to acknowledge. First, the generalizable
planning capability of InterPreT is realized by the learned
symbolic operators. This introduces the assumption that the
underlying domain can be well modeled at a symbolic level.
This is generally not exact, as the physical world is inherently
continuous. A promising future direction is to extend InterPreT
into the setup of Task and Motion Planning (TAMP) [69],
which considers both symbolic understanding and continuous

interactions. Also, the operators learned by InterPreT are
deterministic, which falls short of capturing the uncertainty
in state transitions. This issue can be mitigated by learning
operators with probabilistic effects [22, 26].
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